skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shewmake, Christian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We propose a hierarchical neural network architecture for unsupervised learning of equivariant part-whole decompositions of visual scenes. In contrast to the global equivariance of group-equivariant networks, the proposed architecture exhibits equivariance to part-whole transformations throughout the hierarchy, which we term hierarchical equivariance. The model achieves these structured internal representations via hierarchical Bayesian inference, which gives rise to rich bottom-up, top-down, and lateral information flows, hypothesized to underlie the mechanisms of perceptual inference in visual cortex. We demonstrate these useful properties of the model on a simple dataset of scenes with multiple objects under independent rotations and translations. 
    more » « less
  2. We describe a sparse coding model of visual cortex that encodes image transformations in an equivariant and hierarchical manner. The model consists of a group-equivariant convolutional layer with internal recurrent connections that implement sparse coding through neural population attractor dynamics, consistent with the architecture of visual cortex. The layers can be stacked hierarchically by introducing recurrent connections between them. The hierarchical structure enables rich bottom-up and top-down information flows, hypothesized to underlie the visual system’s ability for perceptual inference. The model’s equivariant representations are demonstrated on time-varying visual scenes. 
    more » « less